
Atlas Copco Generators

QAS 14-300

14-300 kVA

50 Hz - dual frequency

QAS generators:

Supersilenced canopy

QAS generators are whisper quiet. The foam lined canopy is exceptionally effective at reducing noise to a level that fully complies with the latest European regulations (OND 2000/14 EC). QAS generators are suitable for use at night in noise sensitive locations, and can be used in all residential areas

Sturdy and weatherproof

The generator canopy is extremely robust. As it is directly mounted on a skid base **3** a QAS generator can be sited on any firm and flat surface and needs no special foundations.

All major components **(1)** have flexible mountings to keep transmitted vibration to the absolute minimum.

QAS generators are designed to withstand rough on-site handling and are suitable for use in demanding environments.

The canopy is **zincor treated**, with a powder coat paint finish for durability and excellent resistance to corrosion. Atlas Copco equipment looks good for longer, to help retain high residual values.

Dependable diesel power 2

QAS generators can be specified with VOLVO, YANMAR or PERKINS diesel engines. These proven power units offer excellent operating economy, exemplary starting and continuous reliable operation, even under the severest conditions.

For trouble free operation, all power units are fitted with a high capacity fuel filter/water separator **(4)**.

This protects the fuel injection system from solid and liquid impurities.

A two-stage air filter **3**, with inner safety cartridge filter, protects the engine from dust and solid particles, regardless of the operating environment.

Reputable alternator 9

MECC-ALTE synchronous brushless type alternators are fitted. These offer minimal wear and can be specified to deliver outputs ranging from 13 to 300 kVA.

The alternators offer a choice of voltages and can easily cope with different motor starting methods.

They respond quickly to any sudden load change and will supply stable and sufficient power at all times.

MECC-ALTE alternators are specially manufactured for Atlas Copco using new impregnation technology. They offer maximum reliability and meet stringent quality requirements. They comply with all relevant European standards.

Continuous value

Optimum operating cost across the lifecycle of the product.

Continuous operation

The fuel tank capacity is designed to enable the generator to operate for full shifts at maximum load.

The engine oil can be removed via an integral drain pump. This is standard on QAS150-300 models.

the obvious choice

Engine oil and coolant can easily be drained through a wide aperture ② in the base frame.

Handling made easy

QAS generators are well balanced so the units can be safely lifted by crane. Two forklift slots are incorporated in the base frame ①. These can be accessed from either side of the generator.

Supervision at a glance

All key operating functions can be supervised without opening the canopy. The comprehensive instrument panel **4** is covered by a tough transparent cover that provides protection from humidity and the environment.

If the generator is automatically shut down in an emergency, the cause is clearly indicated on the panel **5**.

Designed for safety

The unit is fitted with a 3-pole + N circuit breaker and an earth leakage relay. An automatic main circuit breaker **6** offers protection against overload and short circuits.

The design of the quick fix electrical connections **7** eliminates the risk of accidental contact with the terminals.

The emergency stop button **3** is recessed to prevent damage, but can be quickly accessed without opening the main unit door.

Sockets, door handles and the fuel filler **(b)** are recessed to avoid damage and injuries to third parties. Handles and filler can be locked to prevent unauthorised access or operation.

Easy maintenance

Wide opening doors offer excellent accessibility to all components. The fuel, oil and air filters are all within easy reach.

Attention was paid to extended service intervals.

Principal data

Performance data (1)					
Type			QAS 14	QAS 18	QAS 28	QAS 38
Rated speed		r/min	1500	1500	1500	1500
Rated Power Factor (lagging)			0.80	0.80	0.80	0.80
Rated continuous apparent power		kVA	13	17	25	35
Rated standby power		kVA	14	19	28	38
Rated voltage, line-to-line		V	400	400	400	400
Rated current		A	19	24	36	49
Maximum sound power level (LWA	A)					
complying with 2000/14/EC OND		dB(A)	90	91	95	95
Max. sound pressure at 7m and 75	% load	dB(A)	62.6	63.3	66.5	65.8
Fuel autonomy at full load		h	26.5	21.5	19	13.5
Capacity of fuel tank		1	85	85	100	100
Fuel consumption	100% load	1/h	3.2	3.9	5.2	7.5
	75% load	1/h	2.5	3.1	4.1	5.8
	50% load	l/h	2.0	2.3	3.0	4.2
Design data						
ALTERNATOR						
Insulation - stator		class	Н	Н	Н	Н
- rotor		class	Н	Н	Н	Н
Number of phases			3	3	3	3
Number of leads			12	12	12	12
ENGINE						
Make			YANMAR	YANMAR	YANMAR	YANMAR
Model			3TNE88-ACG	4TNE88-ACG	4TNE94-ACG	4TNE98-A0
Rated net output		kW	12.8	16.4	26.1	32.9
Coolant			liquid	liquid	liquid	liquid
Number of cylinders			3	4	4	4
Bore		mm	88	88	94	98
Stroke		mm	96	96	100	110
Swept volume		1	1.642	2.189	2.776	3.319
Unit (2)						
Dimensions : Length		mm	1860	1860	2080	2080
Width		mm	811	811	951	951
Height		mm	957	957	1157	1157
Weight (dry)		kg	656	714	826	901
Weight (ready-to-operate)		kg	735	793	942	1017

QAS 48	QAS 78	QAS 108	QAS 138	QAS 150	QAS 200	QAS 250	QAS 300
1500	1500	1500	1500	1500	1500	1500	1500
0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80
45	69	100	125	150	200	250	300
50	76	110	138	165	220	275	330
400	400	400	400	400	400	400	400
65	100	145	180	216	289	360	433
95	95	95	98	98	98	98	98
68.1	66	67.6	70.2	70.3	69.6	70.1	71
16	11	13.5	11	16	13	11	9
175	175	310	310	530	530	530	530
10.9	16.0	23.3	28.3	33.6	40.6	51.4	61.7
8.3	12.3	17.6	21.6	25.0	31.4	38.6	45.2
6.2	8.8	12.6	14.5	17.8	22.2	27.1	31.3
H H	H H	H H	H H	H H	H H	H H	H H
Н	Н	Н	Н	Н	Н	Н	Н
3	3	3	3	3	3	3	3
12	12	12	12	12	12	12	12
PERKINS	PERKINS	PERKINS	PERKINS	VOLVO	VOLVO	VOLVO	VOLVO
1004-G	1004-TG	1006-TG2	1006-TAG	TAD72OGE	TWD74OGE	TAD74OGE	TAD1032GE
42	65	91.5	110	132	181	220	266
liquid	liquid	liquid	liquid	liquid	liquid	liquid	liquid
4	4	6	6	6	6	6	6
100	100	100	100	108	107	107	120
127	127	127	127	130	135	135	140
3.990	3.990	5.990	5.990	7.150	7.280	7.280	9.600
2562	2562	3112	3112	3471	3471	3955	3955
1031	1031	1131	1131	1431	1431	1431	1431
1307	1307	1507	1507	2128	2128	2128	2128
1395	1485	1986	2096	3005	3296	3443	3851
17.0	1	22.5	2121	2202	25.40	20.50	12.10

2266

1562

1662

2424

3383

1) Reference condition

3860

3740

For engine performance to ISO 3046/1-1995 Air inlet temperature from -18°C to $40^{\circ} C$ Max. altitude above sea level: 1000 m Fuel specific weight: 0.84

4240

Rating definitions

All units are designed to supply continuous electrical power at full and variable load without limitation to the annual number of hours of operation and with a 10% overload capacity during one hour per 12 hours.

2) Configuration D to ISO 8528-1: 1993 with baseframe, integrally mounted control gear, switchgear and auxiliaries, in enclosure.

Optional equipment

0	p	ti	o	n	S
	_		_		_

optione .						
	QAS14	QAS14S*	QAS18	QAS18S*	QAS28	QAS28S*
Electronic speed governor 50 OR 60 Hz	0	0	0	0	0	0
Electronic speed governor 50 AND 60 Hz	0	abla	0	∇	0	abla
Multi-voltage with selector switch	0	∇	0	∇	0	ightharpoons
Low voltage	∇	∇	∇	∇	∇	∇
Earth leakage relay (EDF)	∇	∇	∇	∇	∇	∇
Remote start	0	0	0	0	0	0
Automatic start (AMF)	0	0	0	0	0	0
Over/under voltage relay (O.U.R.)	0	0	0	0	0	0
Battery charger	∇	∇	∇	∇	∇	∇
Coolant heater	∇	∇	∇	∇	∇	∇
Changeover contactor 60 A	0	∇	0	∇	0	∇
Changeover contactor 110 A	∇	∇	∇	∇	∇	∇
Changeover contactor 200 A	∇	abla	abla	∇	abla	ightharpoons
Changeover contactor 325 A	∇	abla	∇	∇	∇	∇
Changeover contactor 400 A	∇	abla	abla	∇	abla	ightharpoons
Changeover contactor 500 A	∇	∇	∇	∇	∇	∇
Insulation monitoring relay (IT)	0	0	0	0	0	0
Spillage free	0	0	0	0	0	0
External fuel tank connection	0	0	0	0	0	0
Atlas Copco towing eye	0	0	0	0	0	0
DIN towing eye	0	0	0	0	0	0
Ball coupling	0	0	0	0	0	0
NATO towing eye	0	0	0	0	0	0
Parallelling kit	∇	∇	∇	∇	∇	∇
Lighting tower	0	0	0	0	∇	∇
Customized colour	0	0	0	0	0	0

standard

* With sockets

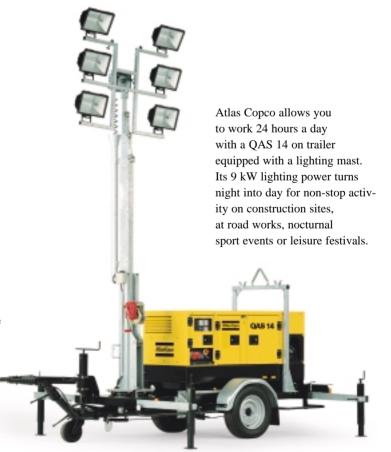
○ = available▽ = not available

Paralleling kits allow parallel operation of two or more QAS150-300 generators.

Single axle portable generator

Twin axle portable generator

OAS38	OAS38S*	OAS48	QAS48S*	OAS78	OAS78S*	0.4.5.1.00	QAS108S*	OAS129	QAS138S*	0.4.9150	OAS200	OAS250	OAS300
QASSO O	QASSOS.	QA346 0	QA3463 ·	QA376 0	QA3763	QA5106	QA51065	QA5136 ●	QA51365	QA5130 ●	QA3200 ●	QA3230 ●	QA3300 ●
0	∇	0	∇	0	∇	0	∇	•	∇	∇	•	•	•
0	∇	0	∇	0	∇	0	∇	0	∇	0	0	0	0
∇	∇	∇	∇	∇	∇	0	∇	0	∇	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	•	•	•	•
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
∇	∇	∇	∇	∇	∇	∇	∇	∇	∇	0	0	0	0
∇	∇		∇	abla	∇	∇	∇	∇	∇	0	0	0	0
0	∇	∇	∇	∇	∇	∇	∇	$\overline{\nabla}$	∇	abla	∇	∇	∇
abla	∇	0	∇	0	∇	∇	∇	∇	∇	∇	∇	∇	∇
ightharpoons	∇	∇	∇	∇	∇	0	0	0	∇	ightharpoons	∇	∇	∇
∇	∇	∇	∇	∇	∇	∇	∇	∇	∇	0	0	∇	∇
∇	∇	∇	∇	∇	∇	∇	∇	∇	∇	∇	∇	0	∇
∇	∇	∇	∇	∇	∇	∇	∇	∇	∇	∇	∇	∇	0
0	0	0	0	0	0	0	∇	ightharpoons	∇	∇	∇	∇	∇
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	•	•	•	•	0	0	0	0
0	0	0	0	0	0	∇	∇	ightharpoons	∇	∇	∇	∇	∇
0	0	0	0	0	0	0	0	0	0	abla	∇	∇	∇
0	0	0	0	0	0	∇	∇	∇	∇	∇	∇	∇	∇
0	0	0	0	0	0	0	0	0	0	abla	∇	∇	∇
∇	∇	∇	∇	∇	∇	∇	∇	∇	∇	0	0	0	0
abla	∇	∇	∇	∇	∇	$\overline{\nabla}$	abla	$\overline{\nabla}$	abla	abla	∇	∇	abla
0	0	0	0	0	0	0	0	0	0	0	0	0	0



External fuel tank connection

Automatic start module

